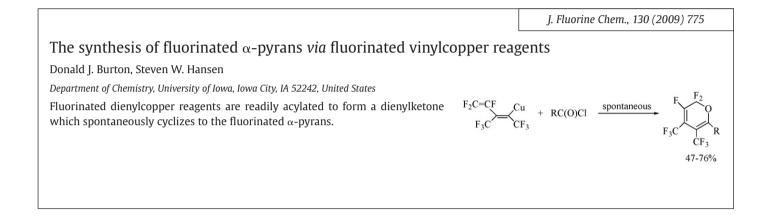
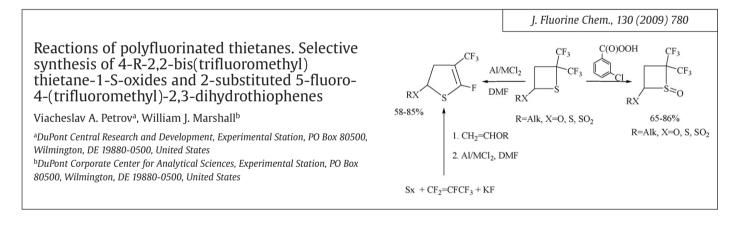
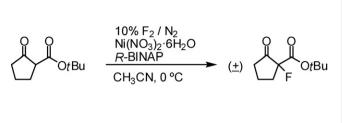
ELSEVIER


Contents lists available at ScienceDirect


FLUORINE

Journal of Fluorine Chemistry

Graphical Abstracts/J. Fluorine Chem. 130 (2009) 767–769


	J. Fluorine Chem., 130 (2009) 788
Nitrosyl and dioxygenyl cations and their salts—Similar but further investigation needed	
Zoran Mazej ^a , Maja Ponikvar-Svet ^a , Joel F. Liebman ^b , Jack Passmore ^c , H. Donald Brooke Jenkins ^d	
^a Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI–1000 Ljubljana, Slovenia ^b Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA	0, 0, 0
^c Department of Chemistry, University of New Brunswick, Fredericton, E3B 6F2 Canada ^d Department of Chemistry, University of Warwick, Coventry, CV4 7AL West Midlands, United Kingdom	$NO \longrightarrow NO^{+} + e^{-}$
Are NO ⁺ and O_2^+ Salts Very Much the Same? YES and/or NO.	

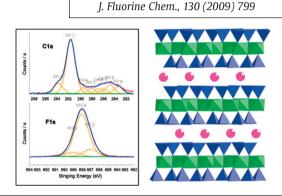
Elemental fluorine, Part 23: Direct fluorination of β-ketoesters as an approach to enantioselective fluorination

Richard D. Chambers^a, Takashi Nakano^a, Takashi Okazoe^b, Graham Sandford^a

^aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK ^bAsahi Glass Co., 1150, Hazawa-cho, Yokohama, Kanagawa 221-8755, Japan

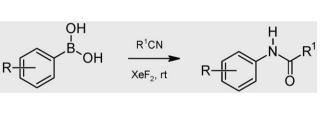
Attempts to develop a direct enantioselective fluorination protocol using elemental fluorine and an appropriate Lewis acid and chiral ligand system are described.

J. Fluorine Chem., 130 (2009) 792


Fluorination of alumino-silicate minerals: The example of lepidolite

Larisa P. Demyanova^a, Alain Tressaud^b

^aInstitute of Geology and Nature Management, Amur Science Centre, Far Eastern Branch, RAS, Blagoveshchensk, Russia


^bInstitute of Condensed Matter Chemistry of Bordeaux (ICMCB-CNRS), University Bordeaux, 33608 Pessac, France

Mica-type minerals can be coated at room temperature with a carbon fluoride nano-layer of ~CF2 composition using c-C4F8 fluorinated gas in rf-plasma conditions.

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089-1661, USA

		J. Fluorine Che	em., 130 (2
Effect of surface fluorination and conductive additives on the electrochemical behavior of lithium titanate	Firs	t charge capacities wit	th VGCF
(Li _{4/3} Ti _{5/3} O ₄) for lithium ion battery	Fluorination	First charge ca	apacity (mA
Tsuyoshi Nakajima ^a , Akimi Ueno ^a , Takashi Achiha ^a , Yoshimi Ohzawa ^a ,	temperature (°C)	300 mA/g	600 m
Morinobu Endo ^b	Original	119	93
^a Department of Applied Chemistry Aichi Institute of Technology Yakusa Toyota	25	98	71

2009) 810

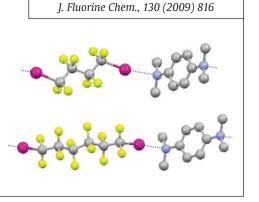
Department of Applied Chemistry, Aichi Institute of Technology, Yakusa, Toyota

470-0392, Japan ^bDepartment of Electrical and Electronic Engineering, Faculty of Engineering, Shinshu

University, Wakasato, Nagano 380-8553, Japan

luorination	First charge capacity (mAh/g	
emperature (°C)	300 mA/g	600 mA/g
Original	119	93
25	98	71
70	143	126
100	121	125
150	112	48

Graphical Abstracts

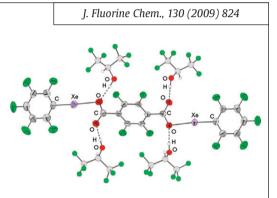

The disorder of perfluoroalkyl chains in crystals: Two case histories of interpretation and refinement

Archan Dey^a, Pierangelo Metrangolo^a, Tullio Pilati^b, Giuseppe Resnati^{a,b}, Giancarlo Terraneo^a, Ivan Wlassics^c

^aNFMLab-Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131 Milan, Italy

^bCNR-Institute of Molecular Science and Technology, University of Milan, Via Golgi 19, 20133 Milan, Italy ^cSolvay-Solexis, Research & Development, Viale Lombardia 20, 20021 Bollate, Milan, Italy

Interpretation and refinement of two disordered perfluorinated alkyl compounds.



Bis(pentafluorophenylxenonium) tetrafluoroterephthalate, $p-C_6F_5XeO(O)CC_6F_4C(O)OXeC_6F_5$, a hypervalent compound with two xenon–carbon bonds

Vural Bilir, Dieter Bläser, Roland Boese, Hermann-Josef Frohn

Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany

Electrophilic pentafluorophenylxenonium and nucleophilic tetrafluoroterephthalate ions combine to form the hypervalent molecule $p-C_6F_5XeO(O)CC_6F_4C(O)OXeC_6F_5$ (1). Crystals obtained from a $(CF_3)_2CHOH/MeCN$ solution contain four alcohol molecules attached to the carboxylate groups of 1 via hydrogen bridges.

J. Fluorine Chem., 130 (2009) 830

or Heat

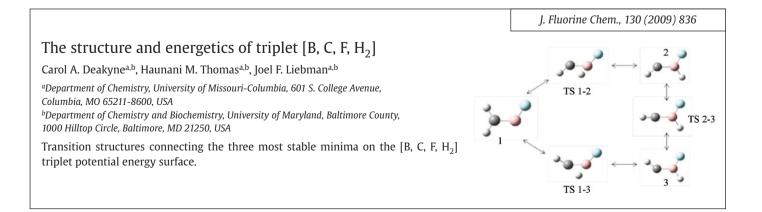
CF₃OF

1

3

CO

2


Heat

Synthesis of trifluoromethyl fluoroformate from trifluoromethyl hypofluorite and carbon monoxide: Thermal and catalyzed reaction

Libin Du^a, Darryl D. DesMarteau^a, V. Tortelli^b, M. Galimberti^b

^aDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA ^bSolvay Solexis, R&D Center, Viale Lombardia 20, 20021 Bollate (Milano), Italy

Improved routes to trifluoromethyl fluoroformate were developed using radical initiated and thermal reactions of trifluoromethyl hypofluorite with carbon monoxide.

